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Abstract
An affine Toda–Sutherland system is a quasi-exactly solvable multi-particle
dynamics based on an affine simple root system. It is a ‘cross’ between
two well-known integrable multi-particle dynamics, an affine Toda molecule
(exponential potential, periodic nearest-neighbour interaction) and a Sutherland
system (inverse sine-square interaction). Polynomials describing the
equilibrium positions of affine Toda–Sutherland systems are determined for
all affine simple root systems.

PACS numbers: 02.20.−a, 02.30.Gp, 02.30.Ik

1. Introduction

Given a multi-particle dynamical system, to find and describe its equilibrium position has
practical as well as theoretical significance. As is well known, near the equilibrium the system
is reduced to a collection of harmonic oscillators and their spectra give the exact order h̄ part of
the full quantum spectra [1]. Naively, one could describe the equilibrium position by zeros of
a certain polynomial. In this way one obtains the celebrated classical orthogonal polynomials
for exactly solvable multi-particle dynamics. For the Calogero systems [2] based on the A and
B (C, BC and D) root systems, the equilibrium positions correspond to the zeros of the Hermite
and Laguerre polynomials [3–6]. For the Sutherland systems [7] based on the A and B (C, BC

and D) root systems, the equilibrium positions correspond to the zeros of the Chebyshev and
Jacobi polynomials [6]. Polynomials describing the equilibria of the Calogero and Sutherland
systems based on the exceptional root systems are also determined [8]. In all these cases the
frequencies of small oscillations at the equilibrium are ‘quantized’ [6, 9]. For another family
of multi-particle dynamics based on root systems, the Ruijsenaars–Schneider systems [10],
which are deformation of the Calogero and Sutherland systems, the corresponding polynomials
are determined [11, 12]. They turn out to be deformations of the Hermite, Laguerre and Jacobi
polynomials which inherit the orthogonality [12]. The frequencies of small oscillations at
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the equilibrium are also ‘quantized’ [11]. Another interesting feature is that the equations
determining the equilibrium look like Bethe ansatz equations.

One is naturally led to a similar investigation for partially solvable or quasi-exactly
solvable [13] multi-particle dynamics. From a not-so-long list of known quasi-exactly
solvable multi-particle dynamical systems [14], we choose the so-called affine Toda–
Sutherland systems [15] and determine polynomials describing the equilibrium positions.
These polynomials, as well as all the polynomials mentioned above, are characterized as
having integer coefficients only.

2. Affine Toda–Sutherland systems

The affine Toda–Sutherland systems are quasi-exactly solvable [13] multi-particle dynamics
based on any crystallographic root system. Roughly speaking, they are obtained by ‘crossing’
two well-known integrable dynamics, the affine-Toda molecule (exponential potential, periodic
nearest-neighbour interaction) and the Sutherland system (inverse sine-square interaction).
Given a set of affine simple roots �0 = {α0, α1, . . . , αr}, αj ∈ R

r , let us introduce a
prepotential W [16]

W(q) = g

r∑
j=0

nj log |sin(αjq)|, q = t (q1, . . . , qr ) ∈ R
r , (1)

where g is a positive coupling constant and {nj } are the Dynkin–Kac labels for �0. That is,
they are the integer coefficients of the affine simple root α0; −α0 = ∑r

j=1 njαj , n0 ≡ 1. For
simply-laced and un-twisted non-simply laced affine root systems α0 is the lowest long root,
whereas for twisted non-simply laced affine root systems, α0 is the lowest short root. In either

case h
def= ∑r

j=0 nj is the Coxeter number. This leads to the classical Hamiltonian

HC = 1

2

r∑
j=1

p2
j +

1

2

r∑
j=1

(
∂W(q)

∂qj

)2

. (2)

It is shown [15] that the principal equilibrium position q̄ is given by a universal formula in
terms of the dual Weyl vector �∨:

∂W(q̄)

∂qj

= 0 ⇔ q̄ = π

h
�∨, �∨ def=

r∑
j=1

λ∨
j . (3)

The dual fundamental weight λ∨
j is defined in terms of the fundamental weight λj by

λ∨
j

def=(
2
/
α2

j

)
λj , which satisfies αj · λ∨

k = δjk . At the equilibrium, the classical multi-particle
dynamical system (2) is reduced to a set of harmonic oscillators. The frequencies (not
frequencies squared) of small oscillations at the equilibrium of the affine Toda–Sutherland
model are given up to the coupling constant g by [15]

1

sin2 π
h

{
m2

1,m
2
2, . . . , m

2
r

}
,

where m2
j are the so-called affine Toda masses [17]. Namely, they are the eigenvalues of a

symmetric r×r matrix M, Mkl = ∑r
j=0 nj (αj )k(αj )l , or M = ∑r

j=0 njαj ⊗αj , which encode
the integrability of affine Toda field theory. In [17] it is shown for the non-twisted cases that
the vector m = t (m1, . . . , mr), if ordered properly, is the Perron–Frobenius eigenvector of the
incidence matrix (the Cartan matrix) of the corresponding root system.
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The corresponding quantum Hamiltonian (with h̄ = 1) [1, 16] is

HQ = 1

2

r∑
j=1

p2
j +

1

2

r∑
j=1

[(
∂W(q)

∂qj

)2

+
∂2W(q)

∂q2
j

]
, (4)

which is partially solvable or quasi-exactly solvable for some affine simple root systems.
Namely for A

(1)
r−1,D

(1)
3 ,D

(2)
r+1, C

(1)
r and A

(2)
2r , the above Hamiltonian (4) is known to have a few

exact eigenvalues and corresponding exact eigenfunctions [15].
The polynomials related to the equilibrium position q̄ are easy to define for the classical

root systems, A,B,C and D. As in the Sutherland cases, we introduce a polynomial having
zeros at {sin q̄j } or {cos 2q̄j }:

Pr(q) ∝
r∏

j=1

(x − sin q̄j ),

r∏
j=1

(x − cos 2q̄j ). (5)

For the exceptional root systems, let us choose a set of D vectors R
R = {µ(1), . . . , µ(D)|µ(a) ∈ R

r},
which form a single orbit of the corresponding Weyl group. For example, they are the set of
roots � itself for simply laced root systems, the set of long (short, middle) roots �L(�S,�M)

for non-simply laced root systems and the so-called sets of minimal weights. The latter is better
specified by the corresponding fundamental representations, which are all the fundamental
representations of Ar , the vector (V), spinor (S) and conjugate spinor (S̄) representations of
Dr and 27 (27) of E6 and 56 of E7. By generalizing the above examples (5), we define
polynomials

PR
� (x) ∝

∏
µ∈R

(x − sin(µq̄)),
∏
µ∈R

(x − cos(2µq̄)). (6)

Therefore, in most cases, determination of the coefficients of the polynomials is reduced to the
evaluation of the elementary symmetric functions of sin(µj q̄) or cos(2µj q̄), µj ∈ R. This
can be easily achieved by hand and with the help of formula manipulation software. For a
more general treatment we refer to our previous paper [8].

The resulting polynomials for various affine root systems �0 are (we follow the affine Lie
algebra notation used in [15, 17]):

A
(1)
r−1. In this case the equilibrium position is exactly the same as that of the Ar−1 Sutherland

[7] and Ar−1 Ruijsenaars–Sutherland system [12], q̄ = (π/2h)t (r − 1, r − 3, . . . ,−(r − 1))

with h = r . Thus the polynomial is also the same, the Chebyshev polynomial of the first kind:
2r−1 ∏r

j=1(x − sin q̄j ) = Tr(x) = cos rϕ, x = cos ϕ.

B(1)
r and D

(2)
r+1 & A

(2)
2r . The Coxeter number is h = 2r for B(1)

r , h = r+1 for D
(2)
r+1 and h = 2r+1

for A
(2)
2r . The equilibrium position is equally spaced by q̄ = (π/h)t (r, r − 1, . . . , 1). We

obtain the Chebyshev polynomial of the second kind, Un(x) = sin(n + 1)ϕ/sin ϕ, x = cos ϕ,
for B(1)

r and a product of them for D
(2)
r+1 and a sum of them for A

(2)
2r ,

2r−1
r∏

j=1

(x − cos 2q̄j ) =




(x + 1)Ur−1(x), B(1)
r ,

(x + 1)Ur/2(x)U(r−2)/2(x) + 1/2, D
(2)
r+1, r : even,

(x + 1)U(r−1)/2(x)2, D
(2)
r+1, r : odd,

(Ur(x) + Ur−1(x)) /2, A
(2)
2r .

(7)
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C(1)
r and A

(2)
2r−1. The Coxeter number is h = 2r for C(1)

r and h = 2r − 1 for A
(2)
2r−1. The

equilibrium position is equally spaced by q̄ = (π/2h)t (2r − 1, 2r − 3, . . . , 3, 1). We obtain
the Chebyshev polynomial of the first kind Tr(x) for C(1)

r and a sum of them for A
(2)
2r−1,

2r−1
r∏

j=1

(x − cos 2q̄j ) =
{

Tr(x), C(1)
r ,

Tr(x) + Tr−1(x), A
(2)
2r−1.

(8)

D(1)
r . The Coxeter number is h = 2(r − 1) and the equilibrium position is equally spaced by

q̄ = (π/h)t (r − 1, r − 2, . . . , 1, 0). We obtain the Chebyshev polynomial of the second kind

2r−2
r∏

j=1

(x − cos 2q̄j ) = (x2 − 1)Ur−2(x). (9)

E
(1)
6 . The Coxeter number is h = 12 and the equilibrium position is not equally spaced by

q̄ = (π/h)t (4
√

3, 4, 3, 2, 1, 0). We consider the set of minimal weights 27 and the set of
positive roots �+, which consists of 36 roots. The polynomials are

220
∏
µ∈27

(x − sin(µq̄)) = (−1 + x)x3(1 + x)(−1 + 2x)2

× (1 + 2x)2(−1 + 2x2)2(−3 + 4x2)3(1 − 16x2 + 16x4)2, (10)

227
∏

µ∈�+

(x − cos(2µq̄)) = x6(1 + x)3(−1 + 2x)6(1 + 2x)7(−3 + 4x2)7. (11)

E
(1)
7 . The Coxeter number is h = 18 and the equilibrium position is not equally spaced by

q̄ = (π/2h)t (17
√

2, 10, 8, 6, 4, 2, 0). We consider the set of minimal weights 56 and the set
of positive roots �+, which consists of 63 roots. The 56 is even, i.e. if µ ∈ 56 then −µ ∈ 56.
The positive part of 56 is denoted by 56+. The polynomials are

224
∏

µ∈56+

(x − cos(2µq̄)) = x4(−3 + 4x2)3(−3 + 36x2 − 96x4 + 64x6)3, (12)

259
∏

µ∈�+

(x − cos(2µq̄)) = (1 + x)4(−1 + 2x)7(1 + 2x)7(−1 + 6x + 8x3)8(1 − 6x + 8x3)7.

(13)

E
(1)
8 . The Coxeter number is h = 30 and the equilibrium position is not equally spaced by

q̄ = (π/h)t (23, 6, 5, 4, 3, 2, 1, 0). We consider the set of positive roots �+, which consists
of 120 roots. The polynomial is

2116
∏

µ∈�+

(x − cos(2µq̄)) = (1 + x)4(−1 + 2x)8(1 + 2x)8(−1 − 2x + 4x2)8(−1 + 2x + 4x2)8

× (1 + 8x − 16x2 − 8x3 + 16x4)8(1 − 8x − 16x2 + 8x3 + 16x4)9. (14)

F
(1)
4 and E

(2)
6 . The Coxeter number is h = 12 for F

(1)
4 and h = 9 for E

(2)
6 and the equilibrium

position is not equally spaced by q̄ = (π/h)t (8, 3, 2, 1). We consider the set of long positive
roots �L+ and short positive roots �S+, both of which consist of 12 roots reflecting the
self-duality of F4 Dynkin diagram. The polynomials for F

(1)
4 are

29
∏

µ∈�S+

(x − cos(2µq̄)) = x2(1 + x)(−1 + 2x)2(1 + 2x)3(−3 + 4x2)2, (15)
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29
∏

µ∈�L+

(x − cos(2µq̄)) = x2(1 + x)(−1 + 2x)2(1 + 2x)(−3 + 4x2)3. (16)

The polynomials associated with the twisted affine root system E
(2)
6 are

212
∏

µ∈�S+

(x − cos(2µq̄)) = (1 + 2x)3(1 − 6x + 8x3)3, (17)

212
∏

µ∈�L+

(x − cos(2µq̄)) = 2(−1 + x)(1 + 2x)2(1 − 6x + 8x3)3. (18)

G
(1)
2 and D

(3)
4 . The Coxeter number is h = 6 for G

(1)
2 and h = 4 for D

(3)
4 and the equilibrium

position is q̄ = (π/2h)t (3
√

6,
√

2). We consider the set of long positive roots �L+ and short
positive roots �S+, both of which consists of three roots reflecting the self-duality of G2

Dynkin diagram. The polynomials for the untwisted G
(1)
2 are

23
∏

µ∈�S+

(x − cos(2µq̄)) = 2(1 + x)(−1 + 2x)(1 + 2x), (19)

23
∏

µ∈�L+

(x − cos(2µq̄)) = (−1 + 2x)2(1 + 2x). (20)

The polynomials for the twisted D
(3)
4 are∏

µ∈�S+

(x − cos(2µq̄)) = x2(1 + x), (21)

∏
µ∈�L+

(x − cos(2µq̄)) = x2(−1 + x). (22)

Before closing this paper, let us briefly remark on the identities arising from foldings of
root systems. Among them those relating two untwisted root systems, i.e. with superscript (1)

are quite simple.

Folding A
(1)
2r−1 → C(1)

r . The vector weights of A2r−1 (2r dim.) become those of Cr

(2r dim.). This relates T2r to Tr in (8) as

A2r−1 : T2r (x) = (−1)rTr(1 − 2x2), C(1)
r . (23)

Folding D
(1)
r+1 → B(1)

r . This gives a quite obvious relation as seen from (9) and (7).

Folding E
(1)
6 → F

(1)
4 . In this folding the minimal weights 27 of E6 become �S (24 dim.) of

F4 plus three zero weights. Thus we obtain

E
(1)
6 : 2(10)/x3 = (15)x→1−2x2 , F

(1)
4 . (24)

We also obtain

E
(1)
6 : (11) = (15)2 × (16), F

(1)
4 , (25)

since the 72 roots of E6 are decomposed into 2�S + �L (24 dim.) of F4.
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Folding D
(1)
4 → G

(1)
2 . The vector weights of D4 (8 dim.) decompose into �S (6 dim.) plus

two zero weights of G2 leading to the identity

D
(1)
4 : 2(9)r=4/(x − 1) = (19), G

(1)
2 . (26)
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